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Abstract. Interaction of electromagnetic, acoustic, and even gravitational waves with accelerating bodies
forms a class of nonstationary time-variant processes. Scattered waves contain intrinsic signatures of
motion, which manifest in a broad range of phenomena, including Sagnac interference, and both Doppler and
micro-Doppler frequency shifts. Although general relativity is often required to account for motion,
instantaneous rest frame approaches are frequently used to describe interactions with slowly accelerating
objects. We investigate theoretically and experimentally an interaction regime that is neither relativistic nor
adiabatic. The test model considers an accelerating scatterer with a long-lasting relaxation memory. The
slow decay rates violate the instantaneous reaction assumption of quasistationarity, introducing non-
Markovian contributions to the scattering process. Memory signatures in scattering from a rotating dipole
are studied theoretically, showing symmetry breaking of micro-Doppler combs. A quasistationary numeric
analysis of scattering in the short-memory limit is proposed and validated experimentally with an example
of electromagnetic pulses interacting with a rotating wire.
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1 Introduction
Wave scattering theory is at the forefront of numerous disci-
plines, including classical and quantum mechanics,1,2 electro-
magnetism,3 and even gravitation.4–6 The advances made in these
fields, inspired numerous applications such as medical imaging,
radar, and sonar, to name just few. Scattering from static bodies
is one of the most explored scenarios, owing to the relative
mathematical simplicity of the analysis as well as the ability
to describe a broad range of real-life observations.7 Yet the
world remains insistently time-dependent, where the location
of objects, their form, and even material composition are subject
to time variations. This time dependence is responsible for an
emergence of a broad range of well-known and understood ef-
fects, most notably Sagnac interference8 and Doppler frequency
shift, which is produced by uniformly moving scatterers.9

However, scattering scenarios become much more complicated
in the case of accelerated bodies, requiring the use of

relativity.10–12 As a result, both the form of the equations and
the associated boundary conditions change, making scattering
problems extremely difficult for analysis and interpretation.
Nevertheless, significant simplifications can be made for non-
relativistic motion, where adiabatic (quasistationary) approaches
can achieve accurate results. In this case, the instantaneous rest
frame assumption considers a series of static configurations,
resembling a discrete-time path of an object. This approach
allows solving a large number of static problems, reproducing
time-dependent effects by stitching the results sequentially.
The question to be asked in this context is whether there is an
overlooked regime of scattering, which does not require using
the complex tools of relativity on the one hand, but cannot be
considered with straightforward adiabatic approaches.

Here we investigate a new and previously unexplored regime
of wave phenomena, introducing memory effects into the scat-
tering processes. Moving electromagnetic resonators with long
relaxation times are proposed as a test model. Specifically,
the analytically solvable problem of scattering from a rotating
dipole is investigated. Although the following investigation*Address all correspondence to Vitali Kozlov, E-mail: vitaliko@mail.tau.ac.il
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may be somewhat biased toward electromagnetic scattering, the
concepts of a dipole and memory are universal, making the re-
sults relevant to many wave related disciplines.

The paper is organized as follows: theoretical derivations for
the induced moment in rotating dipoles with and without
memory are performed and compared. Then, a quasistationary
memoryless method of performing time-dependent numeric
simulations with arbitrarily modulated incident waves is pro-
posed, allowing complex time-dependent problems to be solved
using off-the-shelf static solvers. Finally, this method is utilized
for solving an exemplary problem in electromagnetic scattering,
where incident pulsed radiation is scattered from a rotating wire.
Incident pulses of various lengths compared to the rotation fre-
quency of the dipole are considered, revealing the importance
of another kind of memory, the initial angle of the wire, which
affects the scattered spectrum.

2 General Discussion
Since wave equations are often linear (or can be approximated
as such), the scattering processes can be conveniently viewed
through the prism of linear system analysis.13 In this picture,
static scattering could be envisioned as a linear time invariant
(LTI) process, where the input into the system is an incident
field, and the output is, for example, the scattered field. It is well
known that LTI systems cannot generate new spectral frequen-
cies, therefore, such effects as the Doppler shift cannot be de-
scribed in the frame of this analysis. Instead, linear time variant
(LTV) systems should be considered.14 An illustration of the
concept is depicted in Fig. 1. Indeed, motion is the source of
the Doppler shift, meaning that the scattering scene must be
time-dependent and described by LTV systems. In contrast with
an LTI system, the output of an LTV system is no longer the
time convolution between the input and the system’s impulse
response. The latter is often called Green’s function in the con-
text of scattering. This renders Fourier techniques unsuitable for

straightforward analysis of LTV systems, forcing a time-domain
approach. In the following, we shall consider a very specific
LTV, which can provide intuitive insight into the mathematical
treatment and consequences of memory effects that would follow.

As a test problem, let us consider a small subwavelength di-
pole (in the electromagnetic case, a short metallic wire), rotating
around its center (Fig. 1). The input to this LTV system is an
incident transverse wave, polarized in the plane of the dipole’s
rotation, whereas the output of the system is defined as the in-
duced dipole moment. For a stationary dipole, pointing along
the polarization direction of the incident wave, the polarization
mismatch is minimal, and therefore the induced dipole is maxi-
mal. A perpendicularly aligned dipole, on the other hand, has
maximal polarization mismatch, and therefore there would be
no induced dipole at all. Now, let us allow the dipole to rotate
with a constant angular frequency and find what would be the
induced dipole moment at any given time.

It is convenient to consider an ultrashort pulse, which is ex-
citing the rotating dipole. The excitation will inevitably decay as
the dipole returns the induced energy back into the field. If this
decay (radiation reaction) is fast compared with the timescale of
the motion, it is tempting to apply timescale separation, which
means assuming that there are two different times associated
with the scattering process. The first is the so-called fast time,
which is on the order of the carrier frequency period, whereas
the second is the slow time of the scatterer’s motion. This sep-
aration allows for treating the slow time as a parameter, essen-
tially assuming that the scatterer is momentarily static. The
scattering problem is repeatedly solved in the fast time (for ex-
ample, using Fourier techniques), allowing the slow time to ad-
vance forward. The resulting slow-time envelope of the dipole
moment is, therefore, the “stitching” of static solutions together.
In particular, when the dipole is perpendicular to the polariza-
tion of the incident field, its moment will be identically zero,
as in the case for the static dipole. This timescale separation
method, also referred to as quasistationarity or adiabatic,10,11 is
reminiscent of similar approaches, such as the slowly varying
amplitude approximation and short-time Fourier transform
methods.15 These approximations are especially prevalent in
applied fields such as radar and sonar,16–19 where the typical
velocity of scatterers is far smaller than the velocity of
the impinging waves. This timescale separation approach, when
applicable, is a powerful tool for numeric simulations, as it al-
lows the use of off-the-shelf static simulators in order to
solve time-dependent problems (see Refs. 20–22). However,
as all approximations do, they also must have inaccuracies
and scenarios where they fail. The primary goal of this inves-
tigation is to quantify the deviation of quasistationary approx-
imations when scattering memory is introduced and reveal the
underlying physical processes that are being neglected when
memory effects are not considered.

In order to understand the failure of timescale separation,
consider the case where the excitation of the rotating dipole de-
cays slower than the speed of the characteristic motion of the
scatterer, i.e., the system possesses a long memory. In particular,
the dipole could be excited by an ultrashort pulse exactly when
it is aligned with the polarization direction, causing maximal
moment excitation. This excitation might not decay by the time
the dipole had rotated to the perpendicular position, and, there-
fore, a nonzero induced moment would be observed at the time
related to the perpendicular position, in stark contrast with the
quasistationary result obtained earlier. This suggests that the

Fig. 1 Illustration of memory effects on wave–matter interaction
in accelerating reference frames. A specific example is an inci-
dent pulse scattered from a rotating dipole with memory. Slow
relaxation rates permit the excitation of the dipole at one moment
to decay when the scatterer had changed its position signifi-
cantly. The scattering process may be thought of as an LTV
process, where non-Markovian behavior manifests in nontrivial
signatures at the scattered far field.
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ratio between the memory depth of the system, which is the
reciprocal of the decay rate, and the characteristic timescale
of motion are crucial to the scattering process. This memory
effect can still be significant even if the speed of the scatterer
is far below the relativistic limit, provided that the system has a
long enough memory depth. This will be shown mathematically
ahead.

2.1 Induced Moments of Rotating Dipoles, Exact versus
Quasistationary Solutions

Consider a generic problem of scattering from a subwavelength
thin wire, treated using a dipolar approximation. In the rest
frame, the differential equation governing the dipole moment
PðtÞ is LTI, since all the coefficients that multiply the temporal
derivatives are time-independent [Eq. (1)]. In this case, the evo-
lution of the moment is solely governed by initial boundary con-
ditions, resonant frequency ω0, a driving force FðtÞ, which is
related to the incident wave EiðtÞ, and decay rate γ, which
contains both radiation as well as dissipative losses. It is noted
that the resonant frequency and decay rates are determined by
the geometry and material make-up of the dipole in question
(see Refs. 23–25 for a rigorous treatment). In the case of a
short-wavelength and lossless wire dipole, it holds true that
ω0 ∝ 1

l, where l is the length of the wire and γ ∝ Rrad, which
is the radiation resistance. The differential equation for the
dipole moment is therefore

P̈ðtÞ þ 2γ _PðtÞ þ ω2
0PðtÞ ¼ FðtÞ: (1)

Although the equation is quite general, a range of parameters
and their relation to physical observables will be discussed after
the experimental section. Equation (1) can be solved either in
the frequency or time domain; yet, for the purpose of this inves-
tigation, it is instructive to choose the time domain, which serves
to develop intuition about the memory effect. The solution of
Eq. (1) is given by

PðtÞ ¼
Z

t

−∞
Gðt − t0ÞFðt0Þdt0; (2)

whereGðt − t0Þ is termed here as Green’s memory function, and
it is given by

Gðt − t0Þ

¼
8<
:

1ffiffiffiffiffiffiffiffiffiffi
ω2
0
−γ2p e−γðt−t0Þ sin

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

0 − γ2Þ
p

ðt − t0Þ
i
; t ≥ t0

0; otherwise
:

(3)

The intuitive interpretation of Eq. (2) is that the dipole mo-
ment at some time t depends on the excitation at earlier times t0,
weighted by the decaying Green’s memory function. As seen in
Eq. (3), the depth of the memory, i.e., how far in the past
previous excitations can affect the present, is determined by
the decay rate γ. For large γ, the system possesses very little
memory, while for small γ the system retains the memory of
past excitations for a longer duration of time.

Now, consider the same dipole, rotating at a constant
angular frequency _θ while being subjected to a resonant and
linearly polarized incident plane wave with harmonic temporal

dependence of EiðtÞ ¼ cosðω0tÞ, where ω0 is the carrier fre-
quency. The polarization mismatch factor cos½θðtÞ� depends
on the angle at any moment between the dipole orientation
and the incident field polarization, turning Eq. (2) into the
following causal relation:

PðtÞ ¼
Z

t

−∞
Gðt − t0Þ cos½θðt0Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G̃ðt;t0Þ

Eiðt0Þdt0; (4)

where θðtÞ ¼ θ0 þ _θt, and θ0 is the initial angle between the
dipole’s principal axis and the polarization of the incident field
at time 0. From the perspective of linear systems, when defining
the input as the incident field and the output as the induced
dipole moment, Eq. (4) suggests that the system is LTV, which
can be verified by observing that the associated Green’s
memory function G̃ðt; t0Þ is no longer a function of the time dif-
ference t − t0. This is intuitively explained following logic sim-
ilar to the one offered in the introduction, where the induced
dipole depends strongly on the exact time the incident wave
impinged upon the wire. By choosing θ0 ¼ 0 for simplicity (this
angle will only be important in the final section), the integral in
Eq. (4) may be solved exactly:

PðtÞ¼ 1

2γ2ð1þΩ2Þ
X
�

×

�
Ω2�2Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2−1

p −1
�
cosðω�tÞ−

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2−1

p
�Ω

�
sinðω�tÞ

3−4Q2�4Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2−1

p −Ω2
;

(5)

where Q ≡ ω0

γ is the Q factor of the resonator, Ω ≡ _θ
γ is

the rescaled dimensionless rotation frequency, and ω� ¼
ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q−2p

� _θ are the frequencies of the excited dipole mo-
ment. The summation in Eq. (5) is to be understood as taking
first the top value of � (or �) and then adding the same expres-
sion with the bottom value. It is now possible to take the single-
sided Fourier transform of Eq. (5) to reveal the intensity and
phase of the induced dipole spectrum. Clearly, there are two
peaks at frequencies ω� with complex amplitudes,

P̃� ¼
ffiffiffi
π

8

r
1

γ2ð1þ Ω2Þ

×

�
Ω2 � 2Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 1

p − 1
�
− 2i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 1

p
� Ω

�
3 − 4Q2 � 4Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 1

p − Ω2
: (6)

Before discussing the implications of Eq. (6), it is instructive
to consider the quasistationary solution, obtained under the
timescale separation approximation. By observing Eq. (4),
it is tempting to assume that the frequency of the polarization
mismatch cos½θðtÞ� varies in time on a much slower scale in
comparison with the incident field and Green’s memory func-
tion Gðt − t0Þ. Moreover, if Green’s memory function is fast
decaying compared to the rate of the polarization mismatch
(i.e., Ω ¼ _θ

γ ≪ 1), it effectively turns into a sampling function
at time t0 ¼ t. This memoryless property permits the removal
of the polarization mismatch term outside of the integral, lead-
ing to

Kozlov et al.: Memory effects in scattering from accelerating bodies

Advanced Photonics 056003-3 Sep∕Oct 2020 • Vol. 2(5)



PmemorylessðtÞ ¼ cos½θðtÞ�
Z

t

−∞
Gðt − t0ÞEiðt0Þdt0: (7)

The form of Eq. (7) consists of an integral, which is the sol-
ution to the static problem at minimal polarization mismatch,
multiplied by a time-dependent amplitude related to the instan-
taneous position of the dipole. This result indicates the required
assumptions, which allow investigating short-memory systems
by means of static solutions with an additional slow-time-
dependent multiplicative parameter. This equation is also the
basis for the last part of the manuscript, where a method for
solving dynamic problems with static numeric solvers will be
presented and discussed. The solution of Eq. (7) is immediate:

PmemorylessðtÞ ¼ − 1

2γ2
cosðω�tÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 1

p
sinðω�tÞ

3 − 4Q2
: (8)

The single-sided Fourier transform of Eq. (8) provides com-
plex amplitudes of the induced dipole moment spectrum, which
reveals the existence of two peaks, similar to what was obtained
in the exact solution of Eq. (6):

P̃memoryless ¼ −
ffiffiffi
π

8

r
1

2γ2
1þ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 1

p
3 − 4Q2

: (9)

It is easy to conclude that Eqs. (5) and (6) reduce to Eqs. (8)
and (9), respectively, when the rotation is slow enough (i.e.,
Ω ¼ _θ

γ ≪ 1). The major difference between the memoryless sys-
tem and the exact one can be seen by comparing the amplitudes
of the spectral components—while the peak magnitudes are
equal in the memoryless case [Eq. (9)], the long-memory sce-
nario is characterized by asymmetric amplitudes [Eq. (6)]. This
behavior is shown in more detail in Fig. 2(a). The magnitude
and phase of the peaks in Eqs. (6) and (9) can be plotted versus
the dimensionless rotation frequency Ω, as shown in Figs. 2(b)
and 2(c). The exact form of the curves depends on the quality
factor Q of the resonator. For high Q, there is very little asym-
metry at slow rotation rates. Yet, when the dimensionless
rotation frequency increases toΩ ¼ 2Q, there is maximal asym-
metry as the P̃þ spectral peak continues its fast decay to zero,
whereas P̃− returns to the value of the memoryless system.
Although this result is quite interesting, it is important to note

(b) (c)

(a)

Fig. 2 Comparison between the exact and quasistationary (adiabatic, timescale separation) sol-
utions. (a) The spectrum of the induced dipole moment contains two frequencies. The memoryless
solution [Eq. (6)] has equal amplitudes and phases while the scattering from a dipole with memory
[Eq. (9)] has an asymmetric spectrum. Inset: a dipole, rotating with angular frequency θ̇.
(b), (c) The behavior of the amplitude and phase of the spectral peaks, for high and low Q factors,

as a function of dimensionless rotation frequency Ω ¼ θ̇
γ.
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that the condition for this strong asymmetry is _θ ¼ 2ω0, which
might be an extremely fast rotation rate for optical or microwave
incident wave frequencies. For such fast rotations, relativity
must be taken into account along with other radiative correc-
tions, and the classical framework of the obtained results is
no longer valid. This resonant regime also means that the
mechanical motion of frequency _θ ¼ 2ω0 pumps the dipolar ex-
citation frequency of ω0, in similarity with the relativistic case
explored in Ref. 26. It is possible to observe this asymmetric
spectral amplitude effect for waves that have low frequencies,
as may be the case for mechanical, as well as for very low-fre-
quency (VLF) electromagnetic waves, which are used for under-
water communication.27,28 In addition, these memory effects
could be observed for reactively loaded dipoles that were made
with the purpose of obtaining resonant properties with
extremely small apertures. Such dipoles are constricted by
the Chu–Wheeler limit29,30 and can possess extremely small de-
cay rates. This is further explored in the conclusions, where a
compact formula for the required reactive load at a given dipole
length is derived, showing that this effect can be observed even
for modest rotation periods if large reactances are used.

For lowQ, the amplitude of the peaks in Eq. (9) behaves very
differently due to the detuning of the resonant frequency of the
rotating dipole from ω0 to ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q−2p

. Although the positive
spectral peak at frequency ωþ still decays from the memoryless
solution, as it was in the high Q case, the negative spectral
amplitude P̃− actually exceeds the value of the memoryless
rotating dipole, even at low rotation speed. Although the ampli-
tude asymmetry is more prominent in the low Q case, for the
phase of the spectral peaks, the result is opposite. This effect
occurs since the high Q case shows faster deviation rates be-
tween the induced phases of the spectral peaks at low rotation
frequencies.

It is straightforward to calculate the scattered field once the
dipole moment is known (see Refs. 31–33) and will not be
explicitly developed here. It will be sufficient to say that in
the rest frame of the dipole, the point of scattered field obser-
vation is also moving periodically with the rotational frequency,
meaning that the scattered field will have frequency components
of 2ω� in the lab frame.34 The mathematical derivation pre-
sented in this section is in fact more general and applies to more
than rotating dipoles alone. When moving from Eqs. (2) to (4),
the rotation of the dipole introduced polarization mismatch, only
to be later removed from the integral as per Eq. (7). But, the
polarization mismatch is not unique, and, in fact, it could have
been the modulation of the incident field carrier that underwent
the same analytic process; this will be expanded on ahead [see
Eq. (10)]. Furthermore, since the incident modulation could
be arbitrarily time-dependent, obtaining the solution for the
harmonic case (constantly rotating dipole with polarization
mismatch, as described above) allows for using Fourier series
in order to obtain the solution to any type of modulation. The
correctness of this solution will depend on the highest signifi-
cant harmonic contained in the Fourier series of the carrier
modulation, where the condition for the correctness of the
quasistationary solution will be that this maximal frequency
is required to be slower than the memory depth of the system.
This insight will be used in the next section to synthesize a
method for using static numeric simulators to compute dynamic
time-dependent scattering problems in memoryless or very
short-memory systems.

2.2 Quasistationary Method for Numeric Time-
Dependent Simulation of Short-Memory Systems

Analysis of scattering from rotating bodies has quite a few ap-
plied aspects. Micro-Doppler signatures, being the manifesta-
tion of internal degrees of mechanical motion within an object,
are the subject of studies in radar and sonar sciences. Micro-
Doppler spectra, which are unique characteristics of the ob-
served scatterer undergoing complex motion, are used for
remote target identification. Rotating blades of a helicopter
or a drone,35,36 jet engine modulation,37 cyclists, and pedestrians38

are among numerous examples where micro-Doppler spectros-
copy brings an advantage in identification and classification
via careful signal postprocessing. The vast majority of signals
probe micro-Doppler with either ultrashort or quasi-CW (continu-
ous wave) signals. In the first case of short pulses, the target can
be assumed static during the interaction, meaning that the carrier
frequency of each wave packet remains unaffected. The Doppler
effect in that case manifests in the phase difference between con-
secutive pulses. In the second case of quasi-CW, the pulse length
is effectively longer than the characteristic timescale of the mo-
tion, hence the phase and amplitude modulation are imposed on
the carrier frequency directly. In this case, it is more instructive to
look at the micro-Doppler frequency comb in the frequency do-
main,20,21,34 which is the spectral content within the quasi-CW
pulse. In both cases, timescale separation techniques are fre-
quently applied for the scattering analysis.16 Here, we analyze
and experimentally demonstrate the transition between a
micro-Doppler spectrum and a discrete frequency comb by tuning
the duration of the probing pulse. When the pulse length is
smaller than the period of dipole rotation, a different kind of
memory is revealed as the initial state of the system—which
in this case is the angle between the incident polarization and
the dipole (wire) orientation at the time of pulse incidence.
The LTV property in this case comes through boundary condi-
tions instead of the response kernel.

Straightforward simulation of moving scatterers is not trivial,
since the vast majority of electromagnetic numeric software can-
not self-consistently handle scattering problems with a moving
medium. Static simulations, on the other hand, are very common
and can be performed with numerous off-the-shelf software
packages available (CST, COMSOL, Lumerical, and HFSS to
name a few). At this point, it is important to note that in the
considered practical scenario the decay rate of the excited cur-
rent on the dipole is extremely fast, with the whole scattering
process taking less than a nanosecond. Since the rotation speed
of the wire in the experiment that will be presented ahead does
not exceed 10 Hz (i.e., Ω ¼ _θ

γ ≪ 1), it is clearly possible to
apply the timescale separation method suggested in Eq. (7).
The way to perform a time-dependent simulation is, therefore,
by creating a sweep on the position of the wire, solving a static
scattering problem at every location, and then stitching these
solutions together with a slow time parameter (sequential
counter of positions). Simulating the modulation of the incident
carrier is nontrivial as well, as it significantly increases the com-
putational effort. There are two ways to go about simulating
the scattering process of short pulses, where the carrier’s modu-
lation plays a role. The brute force method is to evaluate the
scattering at a number of specific frequency points, which
correspond to the spectral shape of the modulation, and then
add them up coherently with the Fourier weights that govern
the magnitude and phase of each frequency within the desired
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modulated spectrum. Finally, the weighted sum can be put
through an inverse Fourier transform in order to obtain the time
domain scattered field (carrier and modulation). The drawback
of such a method is that it requires the evaluation of numerous
frequency points, which can be computationally heavy, espe-
cially when many scatterer positions need to be calculated.
In order to perform the analysis in a more computationally ef-
ficient way, a different approach is suggested here for memory-
less systems, which is the case for the majority of practical
scattering scenarios. As per the discussion at the end of Sec. 3,
Eq. (7) deals with the removal of the polarization mismatch from
the integral. The polarization mismatch is not unique, and the
same applies to slow modulation of the carrier, under similar
restrictions. The result is a static solution multiplied by a
time-dependent amplitude. Consider Eq. (4), but this time with
an incident Gaussian pulse of the form EiðtÞ ¼ cosðω0tÞAðtÞ,
where AðtÞ is a slowly varying amplitude and is of a Gaussian
shape in the simulations and experiment [AðtÞ ¼ e−ðtτÞ2 , τ is
the characteristic width of the pulse]. Using Eq. (4) together
with the quasistationary approximation of Eq. (7), which is cor-
rect for slow rotation and modulation (i.e., _θγ, γτ ≪ 1), the dipole
moment is given by

PðtÞ ≈ cosðθ0 þ _θtÞAðtÞ
Z

t

−∞
Gðt − t0Þ cosðω0t0Þdt0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
static harmonic solution

: (10)

This result could be intuitively understood since the dipole
moment would be proportional to the amplitude of the incident
pulse at any given moment multiplied by the static response.
The method was applied to the problem of pulse scattering from
a rotating dipole, as shown in the experiment in Fig. 3. The sim-
ulation was performed using CST Studio, where the wire was
illuminated by a plane wave, while the structure was rotated by
a set of sufficiently discretized angles, corresponding to the
location of the wire at any time during the motion. The far field
at the receiving antenna location (perpendicular to the direction
of incident wave propagation) was recorded for each angle.
The resulting slow time sequence was then multiplied by the
modulation envelope, as shown in Fig. 4. Note that an additional
slow time-dependent rotation operator should multiply Eq. (10)
to account for the transformation of scattered fields from the

rotating lab frame to the laboratory one. It is interesting to note
that for pulses shorter than the rotation frequency of the dipole
(i.e., _θτ ≪ 1), the resulting dipole moment, and therefore the
scattered field, will be proportional to cosðθ0Þ. This is because
in that case the scattered pulse effectively samples the momen-
tary position of the wire. This memory effect of initial position
will be shown experimentally ahead to be of considerable im-
portance even when the pulse length is on the order of the rota-
tional period (i.e., _θτ ∼ 1). The results of the simulation appear
ahead in Figs. 4–6, where they are compared against the experi-
ment, which is discussed next.

2.3 Experimental Verification of Quasistationary
Method—Scattering from a Slowly Rotating Wire

In order to verify the validity of the numerical technique, a set of
experiments was performed in an anechoic chamber. The
setup is shown in Fig. 3, where a rotating wire of length Lwire ¼
40 mm and diameter dwire ¼ 1 mm serves as the analogue of a
rotating dipole. The wire is rotated by a stepper motor at a con-
stant frequency of 3.4 Hz while being illuminated by a vertically
polarized electromagnetic field. The transmitted signal is a
Gaussian envelope around a 3.195-GHz carrier, which is chosen
to maximize the scattering from the wire. The Gaussian modu-
lation has a controllable temporal width to satisfy different in-
teraction regimes, which will be described below. The receiving
antenna is polarized in the vertical direction as well and is placed
perpendicularly to the transmitter in order to increase the isola-
tion between transmitting and receiving channels, while simul-
taneously insuring direct lines of sight to the scatterer. This
bistatic configuration allows for increasing the signal-to-noise
ratio quite significantly. The signal from the receiving antenna
is downconverted using a pair of mixers and a 90-deg splitter
(maintaining the phase in one path and adding 90 deg in another
one), producing in phase and quadrature data at the intermediate
frequency (IF) output of the mixers. The IF outputs are recorded
using a sampling scope, and the data is digitally processed in
order to obtain the down converted temporal signal.

The results, comparing the theory and experiment, appear in
Figs. 4–6, and are in good agreement with each other. There are
several important factors to consider about the system under
study. First, the relation between the pulse duration and the ro-
tation period of the wire should be underlined. As discussed in

(a) (b)

Fig. 3 Experimental setup for probing scattering from rotating objects. (a) The schematic repre-
sentation of the setup. A carrier frequency ω is split between a transmitting and a receiving arm.
The transmitting arm is mixed with a Gaussian (G) pulsed signal of controllable pulse length to
generate the envelope. The receiving arm is split into two quadratures in order to down-convert
the scattered signal. (b) A photo of the experimental setup inside the anechoic chamber. Inset:
enlarged photograph of the mechanism to control the wire’s rotation (electric dipole analogue;
rotation direction is marked with red arrow) at a constant frequency of 3.4 Hz.
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Sec. 1, short pulses will sample the instantaneous location of the
wire, whereas long pulses will experience periodic amplitude
modulation. Second, in the short-pulse regime, the initial angle
of the wire with respect to the polarization of the incident
field plays a crucial role, as shown in Eq. (10). Taking those
clarifications into account, the simulations and experiments
are repeated for pulse lengths ranging from 0.1 to 100 s, as well

as for initial angles of the wire θ0 ranging from 0 deg to 180 deg.
Figure 4 shows the experimental and numerical results for two
pulse widths and with the wire having the initial angle of θ0 ¼
0 deg (the position of the wire at time t ¼ 0, when the pulse has
its maximum at the wire’s center). The results are the time-de-
pendent [Figs. 4(a) and 4(c)] as well as the spectral [Figs. 4(b)
and 4(d)] content of the down converted scattered field at the
receiver. Indeed, it can be observed that for incident Gaussian
pulses, the scattered field is also Gaussian, with additional
harmonic modulation, as predicted by the theoretical result in
Eq. (10). For longer pulses, shown in Fig. 4(b), the spectrum
comprises a frequency comb, which becomes narrower with in-
creasing pulse length. Indeed for infinite pulse length, the result
converges into a discrete comb, which is separated in frequency
by 2_θ (as in Ref. 34, which considers CW radiation). For short
pulse lengths shown in Fig. 4(d), the spectrum is smeared, as the
components at each discrete frequency spread and overlap with
neighboring peaks.

In order to perform a comprehensive study of the phenom-
ena, a broad range of parameters has been investigated. In par-
ticular, the same experiment that produced Fig. 4 was repeated
with pulse lengths ranging from 0.1 to 100 s, as well as for initial
angles of wire θ0 ranging from 0 deg to 180 deg. The results are
shown in Figs. 5 and 6. Note that Figs. 4(b) and 4(c) represent
horizontal cuts of Fig. 5, which reveal the transition from the
long- to short-pulse regime, where smearing of the Doppler
comb is clearly seen. The discrete frequency lines (x axis of
the color map) become broader when reducing the pulse length

Fig. 5 Comparison of the scattered baseband spectra obtained
in simulation and experiment as a function of frequency and pulse
length. As the pulse length increases (in comparison with rotation
speed), the micro-Doppler peaks form at discrete frequencies.
For short pulses, the peaks are broader in frequency, creating
a featureless spectral continuum. The initial angle for both experi-
ment and simulation is taken as θ0 ¼ 0 deg.

(b)(a)

(c) (d)

Fig. 4 Far-field scattering of Gaussian pulses from a rotating wire, comparing short memory
(adiabatic, quasistationary) simulation with experiment (the setup appears in Fig. 3). Blue lines:
two different Gaussian pulse lengths, 0.3536 and 0.1414 s measured experimentally. Red
lines: numerical analysis using the short-memory method. Black dashed-dotted line: the envelope
of the incident pulse [panels (a) and (b)] and its spectrum [panels (b) and (d)]. Columns: scattered
signals in time and frequency domains, respectively.
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(y axis) until they begin overlapping and, finally, smearing out
once the rotational period of the dipole becomes comparable
with the signal’s Gaussian envelope. The experimental data con-
tain additional peaks in between the ones found in simulation.
This is the result of offset of the rotation axis from the center of
the wire, leading to odd harmonics generation at the baseband
(discussed in more detail in Ref. 34).

The final parameter affecting the interaction phenomenon is
the initial angle between the dipole and the polarization of the
incident radiation. This angle is defined in Eq. (10) as the one
between the incident polarization and the wire’s principal axis at
a time corresponding to the arrival of the peak of the incident
Gaussian pulse to the origin. Figure 6 shows the spectral com-
position of the scattered pulses at fixed pulse lengths for variable
initial angles. For pulses longer in comparison with the rotation
period of the wire, there is no dependence of the spectrum on the

initial angle, as shown in Figs. 6(a) and 6(b). This is due to the
fact that the wire completes numerous rotations during the du-
ration of the pulse, effectively losing the memory of the initial
angle. On the other side, when the pulse length is very short in
comparison with the wire’s rotation frequency, the spectrum is
completely dominated by the initial angle. This can be under-
stood by returning to Eq. (10), where the short pulse effectively
samples the cosine at time 0, causing a harmonic dependence
of the scattered spectrum on the initial angle. As shown in
Figs. 6(g) and 6(h), for a pulse length of 1.25 s, there appears
to be a minimum of the scattered spectrum near the initial angle
of 90 deg. This is consistent with Eq. (10) and can be understood
intuitively, since the wire is oriented perpendicularly to the in-
cident polarization and, hence, scatters very little. For extremely
short pulses, this minimum would occur at 90 deg exactly.
However, for longer pulse lengths, the minima may have an off-
set, as shown in Figs. 6(g) and 6(h), where the pulse length is
only about two times smaller than the rotation period. The sen-
sitivity of the spectral peaks to the memory of the initial angle
allows for remote sensing of the state of the rotating wire. In
Figs. 4(b), 4(c), 5, and 6, only the positive frequencies of the
baseband are shown, since the negative frequency components
are identical due to the fact that this scattering scenario has very
short memory [Eq. (9)] and, hence, a symmetric micro-Doppler
spectrum. For faster wire rotation, or for another type of reso-
nator (typically, with high Q factor), the quasistationary method
would fail, resulting in asymmetric micro-Doppler peaks
[Eq. (6)]. In this case, double-sided maps should be presented
for a complete characterization of the process.

3 Summary and Discussion
A new wave–matter interaction regime of motion-induced
nonstationarity was investigated. In particular, scattering from
rotating dipoles was shown to have strong dependence on
memory effects, which manifests in asymmetric micro-Doppler
signatures of the scattered field. When a scatterer does not pos-
sess intrinsically long memory, an adiabatic (quasistationary)
simulation method was suggested and experimentally tested,
allowing off the shelf static numeric solvers to be used to com-
pute time-dependent scattering scenarios. Although a straight-
forward experimental demonstration of the memory-inspired
impact on scattering is still technologically challenging, other
aspects of nonstationarity in moving systems were probed. The
impact of initial boundary conditions and pulse duration, in
comparison with the characteristic parameter of motion, was in-
vestigated, demonstrating the transition between micro-Doppler
combs and continuous spectra. It is also worth noting that
the incident pulse shape affects the scattering scenario, as the
Fourier spectral decomposition in nonstationary problems has
limited physical meaning, seeing as the output of an LTV system
is no longer the usual convolution between the input and im-
pulse response of the system. For example, two signals, having
the same spectrum but different in phase content, might have
a completely different micro-Doppler spectrum.

An experimentally feasible configuration, where the pro-
posed scenario can fully emerge, can be achieved by reactively
loading the rotating dipole in the radio frequency range. The
first resonant frequency of a dipole corresponds to the condition
where its length l is at about half an excitation wavelength,
which is related to the angular frequency ω̃0 ≃ πc

l . To shift
this resonance toward lower frequencies while keeping the
dipole length constant, the dipole may be reactively loaded,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Colormap, demonstrating scattered signals spectra at the
baseband. Vertical axis—initial angle between the wire and the
polarization of the incident field, horizontal axis—frequency.
Different pulse widths are indicated in insets. (a), (c), (e), and
(g) Numerical data. (b), (d), (f), and (h) Experimental data.
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for example, with a capacitor in parallel to the natural capaci-
tance of the dipole. Recalling that the dipole may be modeled as
an RLC contour with resonant frequency ω0 ¼ 1ffiffiffiffiffi

LC
p , where L

and C are the combined natural and lumped element reactance,
and by considering the newly added reactive capacitor as pos-
sessing capacitance, which is β times larger than the natural
one, the resonance is down-shifted to ω0 ¼ ω̃0ffiffiffiffiffiffiffi

1þβ
p ¼ πc

l
ffiffiffiffiffiffiffi
1þβ

p .

Since memory effects begin to manifest themselves when
_θ ≈ γ, we supplement the beforehand expression with the
Chu–Harrington limit, applied on small scatterers and get

ω0

γ ≥ ð 2cω0l
Þ3 þ 2c

ω0l
≈

z}|{β≫1

ð 2cω0l
Þ3; therefore, the interesting regime is

reached when _θ ≈ π4c
8lβ2 ¼

3.65 ð GHz
meter of wire

Þ
β2

. For a 1-m dipole, which
is 5 mm in diameter, loaded with a realistic capacitor of coef-
ficient β ¼ 103 (which for the above values means about a 1-nF
lumped capacitor39), the resonant frequency is shifted toward
ω0 ¼ 4.74 MHz. The required rotational frequency in order
for the memory effects to begin playing a role in the scattering
process is only _θ ¼ 3.65 kHz, which is achievable with modern
instrumentation.

The investigated memory effect is universal and can emerge
in many wave-related disciplines and scenarios, e.g., optical,
where molecules and even macroscopic structures are being
rotated with laser beams40–44 and optofluidics, where time-
dependent Purcell enhancements can emerge,45,46 in radar,
LIDAR, and sonar, where the micro-Doppler signatures pro-
duced by rotating blades of a helicopter are of interest,34,47,48

and, even in astronomy, where neutron stars can be approxi-
mated by rotating dipoles.49 Although the effects of rotation
on scattering were comprehensively studied in the past (e.g.,
Refs. 34 and 50–52), the effects of memory and nonstationarity
were not considered before, to the best of the authors’ knowl-
edge. The new interaction regime was studied here primarily in
the context of the Doppler effect; however, memory effects can
be important in other scattering phenomena as well.
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